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ABSTRACT 

In transmission and receiver design for radar or communication systems whose noisy 

channels contain Gaussianly fluctuating multipath, it is convenient to adopt a re- 

ceiver outputsignal-to-noise ratio (SNR) criterion even though best error perform- 

ance is actually sought. We investigate the loss (expressed as an equivalent trans- 

mitter output reduction) attending the use of this criterion. It is shown that when 

a Karhunen-Loeve analysis of the signaling system yields a largest eigenvalue that 

is suitably small, this loss is minor or negligible at all levels of error probability. 

Furthermore, it is easily possible to have a channel-perturbed transmission that is 

sufficiently weak and incoherent for this eigenvalue to guarantee low loss, yet not 

so weak that high output SNR (good error performance) is precluded. 
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OUTPUT SIGNAL-TO-NOISE RATIO AS A CRITERION 

IN SPREAD-CHANNEL SIGNALING 

I.      INTRODUCTION 

A.    Background and Summary of Main Results 

1 z It has  been  a basic  tenet in certain  radar astronomy detection  studies   '      that   system 

performance is adequately measured' by a suitably defined receiver output signal-to-noise ratio 
(SNR),   where the receiver is assumed to perform a quadratic operation on the incoming signal 
that reduces it to a single number.!   It is further assumed that the cascaded multiplicative (Gauss- 
ianly fluctuating multipath such as exists with a radar-astronomical target and which produces 
time- and frequency-spreading) and additive (white noise such as thermal or shot-effect noise) 

channel disturbances are independent,   zero-mean Gaussian processes of known    correlation 
functions.    One then readily finds the explicit quadratic-form receiver whose output SNR is the 

1 -3 greatest and which has a straightforward engineering realization as a kind of radiometer. 

With the receiver thus determined,   the functional dependence of the system performance on the 
transmitted waveshape and energy can be exhibited as measured by output SNR.    The studies 

conclude with the problem of optimizing the transmitted waveform for a given available energy, 
still according to the SNR criterion and also assuming receiver observation over all time.    A 

difficult nonlinear integral equation is encountered,   which has been solved only in the particular 
case where the shapes of the time- and frequency-spreading profiles are Gaussian curves.    (The 
best fixed-energy transmission in these circumstances is found to be a Gaussianly .shaped pulse 
having a nominal duration that is the geometric mean of the time spread and the reciprocal of 
the frequency spread,   and performance is shown to become worse as the product of the time 
spread by the frequency spread increases.) 

What progress has been possible,   as outlined above,   is due largely to the mathematical 

nicety of the quite ad hoc SNR criterion,   the assumption of a quadratic-form receiver,   and the 
Gaussianness of the channel disturbances.    A more conventional and useful practice in radar 

and binary communications,   where decisions have to be made,   is to rate system performance 
in terms of the pair of probabilities that relate to the two types of error that can be committed 

3 
t That output SNR is a satisfactory performance measure is widely held in radio astronomy.     In this older field the 
term "deflection," defined as the ratio of the increase in mean output produced by the signal sought to the output 
standard deviation in the absence of signal,  is equivalent to the square root of our output SNR. 

$ The radar astronomy detection system is equivalent to a binary communication system that employs on-off signal- 
ing over a fluctuating multipath channel. 

§ For this discussion, the absolute intensities of the channel disturbances need not be known. 



in deciding between "target present" and "target absent" in the radar situation,   or between the 

two possible transmitted symbols in binary communications.    By adopting such an error- 

probability criterion while removing all restrictions on the form of the decision-making receiver, 

it is found for the above channel that the optimum receiver can be realized as a quadratic-form 

processor followed by a decision operation which is triggered by the value of the processor out- 
1 2 put '    (see Sec.II-A and Appendix A).    Moreover,  the particular error-probability criterion 

that is chosen has no effect whatsoever on the processor and determines only the decision level. 

Thus there is a clear degree of correspondence between the optimum receivers obtained under 

the SNR and error-probability criteria. 

In general,  however,  the detailed specification of the quadratic-form processor in the opti- 

mum decision-making receiver differs from that of the SNR-maximizing quadratic-form receiver, 

being implicit in the sense of involving the solution of an integral equation and possibly being 

relatively hard to implement as well.    Likewise,  the best fixed-energy transmissions under the 

two kinds of criteria ordinarily will differ,   the one that optimizes performance under an error- 

probability criterion being at present exceptionally difficult to determine. 
The purpose of the present study is to provide proof,  based on quite general yet exact error- 

probability analysis,   that radar and binary communication systems can safely be designed for 

spread channels according to the SNR criterion,   even though best error performance is the actual 
goal,  as long as "low energy-coherence" (LEG) conditions' prevail in the channel.    This is sig- 

nificant in that,  under these conditions,   one can now have full confidence in using the relatively 

tractable mathematics of the SNR criterion,   without having to face the worry so frequently met 

in trying to relate output SNR to error performance — that of the lack of knowledge of the output 

probability distributions. 
Specifically,  the first main result of the present study of a dual,-   spread-channel signaling 

system is that if,  under LEC condititions,  the quadratic-form,  error-optimum signal processors 

that appear in the receiver are replaced by the SNR-maximizing generalized radiometers,  very 
little increase in the transmission amplitude (keeping its waveshape unchanged) is needed to 

overcome the ensuing degradation in error performance/*    It will be shown in Sec. Ill-A that the 
necessary increase is upper-bounded by a measure of the degree to which LEC conditions prevail, 
and that this upper bound does not depend at all on the values of the error probabilities or on 

whether a radar or a binary communication system is considered. 

t Our LEC condition [made quantitative through (2.5)] involves, on the one hand, the incoherence produced by 
the time- and frequency-spreading of the fluctuating multipath, and on the other hand, the temporal behavior of 
the ratio of the average received signaling power to the noise spectral density.    The more time- and/or frequency- 
spreading that there is, the more energy can be transmitted while LEC conditions still prevail; in fact, signals 
having infinite duration and energy can be sent over the channel without violating LEC, as shown by the bound 
(2. 7).    Consequently,  LEC does not per se preclude high output SNR or low error probabilities.    (See also the 
remarks preceding (2. 19).] 

| This is a twofold iteration of the single-channel system considered in Refs. 1 and 2 and Appendix A, and is intro- 
duced in order to model either a radar system or equivalent on-off binary communication system, or a binary com- 
munication system of the more modern kind where energy is emitted with either of the symbols to be conveyed. 

§ To give an example in the context of radio astronomy,  let us suppose that according to some error criterion, and 
with a white-noise background of 100°K, a spectral  line of an arbitrary width and a peak density of 1°K is just 
detectable using a SNR-maximizing radiometer.    Then by (2.8) and the receiving loss bound established in 
Sec. Ill-A, 0. 99°K is a lower bound to the peak density of an identically shaped line that would be detectable 
with the optimum receiver, assuming the same observation interval for reception.    The game hardly appears worth 
the candle, and there would be even less to be gained were the background noise to exceed 100°K. 



That there is such a small effective difference in performance under LEC conditions is not 

surprising,   considering that the error-optimum processing approaches the SNR-maximizing 
4 

processing as the channel noise intensity becomes infinite (see Sec.II-B).    In fact,   Bello   has 
already demonstrated this small performance difference,   making the now unnecessary approxi- 
mation that the processor outputs are Gaussianly distributed. 

5 
The second main result proceeds directly from Pierce's finding    that the error probability 

for optimum reception of binary symmetric signaling over spread or diversity channels can be 
expressed as a real integral involving the system eigenvalues (see Sec. IV).    For this situation 

only,   it will be shown that the error probability of the error-optimum receiver can be bounded 

above and below by expressions involving the maximized output SNR that is attained when gen- 

eralized radiometers are substituted for the quadratic-form processors appearing in the optimum 

receiver.    Under LEC conditions these bounds are close in terms of decibels of transmission 
amplitude (in fact they are close in an absolute sense under extreme LEC conditions).    By taking 
this result together with the low receiving loss established as the first main result,   we conclude 
that one can safely proceed to design both transmission and reception on the basis of the SNR 
criterion,   in a LEC-spread-channel,   binary symmetric communication system.    That is,   we 
can be sure that the overall "design loss," defined in terms of an equivalent reduction in trans- 
mission amplitude attending the adoption of the SNR criterion,   will be small. 

B.    General System Description 

The system to be analyzed consists of a duplicate pair of the radar or on-off communication 

systems treated in Refs. 1 and 2,   operating in reciprocal fashion over a pair of noisy,   fluctuating 
multipath channels that are identical but statistically independent.    Specifically,   a single bit of 

information is sent by transmitting either a known narrow-band waveform Re {'X(t) e     ° }  over 
one channel and nothing over the other,   or vice versa.'    The transmitted waveform is converted 
by the fluctuating multipath of its associated channel into a (generally nonstationary) zero-mean, 

1 2 narrow-band Gaussian process z(t) having the correlation function ' 

<px(t, r) =  | Re     Cf   X(t - X) SC*(T - X) *y(uj, X) 
*   -oo 

x exp[i(u> + LCQ) (t - T)] dio dX (1.1) 

where =J>   (u>, X) is the scattering function of the fluctuating multipath.    This (real,  non-negative) 
function describes the power spectra (in  oo) of the Gaussian fluctuations ("y"  processes) that 
produce the frequency spreading and that occur with mutual independence at the various time- 

spreading multipath delays (in  X).    Setting T = t and integrating over all  t  in (—°°,°°) to obtain 
the total average received signaling energy,   we find 

E    = z <t>   (u), X) duj dX 
y 

(1.2) 

t The two channels might be carried by a single propagation medium if wide-deviation frequency-shift or time- 
shift keying were employed. 



so that the double integral of the scattering function is equal to the ratio of the total average 

received signaling energy to that transmitted. 

Additive white Gaussian noise is injected into each channel, following the fluctuating multi- 

path disturbance. The added noises are independent, and each is of spectral density N , speci- 

fied on the basis of a physical,   single-sided spectrum measured in cycles/second. 

In order to have a system model that will serve equally well either for communications 

employing balanced signaling of the type just described,   or for radar or on-off signaling,  we 

introduce the respective options of either making both channel outputs available to the receiver, 

or of allowing it to observe either channel output but not both.    In the former or "communication" 

option,  the receiver observes,   at one channel output,   a sample of the signal-plus-noise Gaussian 

process having correlation function tp   (t, T) + N 6(t — T)/2 and,   at the other channel output,   a 

sample of a white-noise-only process whose correlation function is N 6(t — T)/Z;  the receiver is 

called upon to decide which channel output is which and hence to decide over which channel the 

transmission has been sent.    In the radar mode the receiver decides to which of the above two 

Gaussian processes its observation belongs,   and hence judges whether or not there has been a 

transmission over (or target in) the channel whose output it observes.    This receiver description 

applies both to the optimum receiver now to be discussed and to the suboptimum receiver next 

considered. 

II.    OPTIMUM AND SUBOPTIMUM RECEPTION 

A.    Error-Optimum Reception and a Pair of Tests for Low, Largest Eigenvalue 

Whatever observations may be available to it,  the binary-choice receiver that achieves the 

best error performance,   regardless of the details of the particular error-probability criterion 

adopted,   is one that bases its decisions on the value of the likelihood ratio taken over all avail- 
7  8 

able observations,  or on any monotonic function of this ratio such as the natural logarithm. ' 

For the radar option the logarithm of the likelihood ratio is that of the ratio of the probability 

measure of the single observation under the "transmitter on" hypothesis to its probability meas- 

ure under the noise-only alternative.    This logarithm can be the processing output of the optimum 

radar receiver,   its value then determining the decision. 

For the communication option the likelihood ratio is a similar ratio of probability measures — 

this time taken on the dual channel-output observation.    By virtue of the assumed channel in- 

dependence,   this ratio factors into the product of a pair of likelihood ratios taken on the individual 

channel outputs.    For either observed output,   the hypothesis that there has been a transmission 

over its associated channel but not over the other,   and the converse hypothesis,   are equivalent 

to the radar hypotheses of transmitter "on" and "off," respectively.    We therefore conclude, 

recognizing that "on" in one channel necessarily corresponds to "off" in the other and vice versa, 

that the optimum processor output for the communication receiver can be formed as the differ- 

ence of the logarithm-likelihood outputs from a pair of optimum radar processors that operate 

individually on the channel outputs. 

As a matter of mathematical convenience,   and because,   as earlier mentioned,   we are free 

to choose any monotonic function of the likelihood ratio for the optimum processing output,   we 

shall usually add an arbitrary constant to the logarithm of the likelihood ratio and shall multiply 

it by another (positive) constant as well,   specifying the result to be the optimum processor output. 



In a radar situation such shifting and scaling merely requires a compensatory resetting of the 

decision level,   a detail which need not concern us for the purposes of the present study.    Such 
modification is likewise permissible in the pair of optimum radar processors whose output dif- 

ference has just been demonstrated to be the optimum communication processing output,   as long 

as both radar processors undergo the same modification.    In binary symmetric communication 
systems,   in fact,   where the decision level for the logarithm of the likelihood ratio would be set 

at zero,  the decision level is obviously left unchanged by such addition or scaling. 

Drawing on the Karhunen-LoSve exposition of Refs. 9 and 10,   it is found in Appendix A that 
we can write for the output of the optimum radar processor (modified as above) that operates on 
the signal w, (t) received over the k     channel: 

oo    ~      2 2 
X.(w., , + w., ,) 

d ° -    V      3    3kl        jk2' 
k "   L 1 +/3. 1, 2 

j=0 J 
(2.1) 

For radar,   d.   or d,   is the optimum decision quantity;   in communications it is d?  — d . In (2.1), 

Jkl 

'•11 jk2 

fT/2 
V2   \ w, (t) Re JiMt) e 

J-T/2      K 

iu>  11 
o 

J 
dt 

\<2 
rT/2 

-T/2 
i/).(t) expl iw   t + dt 

(2.2) 

where we assume without loss of generality that the observation interval is (—T/2,   T/2).    Also, 

2\. 
J 

N 
(2.3) 

and the X. are equal to one-quarter the bounded,   countable,   non-negative eigenvalues associated 

with the orthonormal eigenfunctions i/).(t) of the homogeneous linear integral equation 

\ \\   X(t - \)X*{T - X) *   (o>, X) exp[ia>(t-T)] dwdX 
J-T/2    JJ y 

X 4>.(T) dr = 4X.i^.(t) 
T T (2.4) 

In (2.4) each eigenvalue is counted by the number of linearly independent eigenfunctions associated 

with it — frequently there will be just one. 
The largest eigenvalue (making the quite unessential assumption that there is only one eigen- 

function having this eigenvalue) of (2.4) is given the index j = 0.    The noise-scaled largest eigen- 
value j3n = 2Xn/N    is of prime interest to this study,   for it will be shown in Sees. Ill and IV to set 

limits on the design loss associated with the adoption of the output-SNR criterion. 

Although it is generally difficult to determine /3„ exactly,   all that is really required for low 
design loss is that an upper bound to /3n be small compared to unity.    Such upper bounds are given 

in Refs. 2 and 4 in terms of <p   (t, T),   the correlation function (1.1) of the channel-perturbed trans- 

mission (less noise).    A key bound is 



2_ ^T/2 
Jo     -T/2<t<T/2  J-T/2   ' Z' 

0 ^     if" „, H^tr^ /,    J   , 

Here pz(t, T) = <Pz(t, v)/J<pJX> t) Vz(1"' T> is a correlation coefficient whose magnitude,   an index 

of the coherence of the (noiseless) channel-perturbed transmission,   cannot exceed unity. 

Observing that the right side of (2.5) involves a time-integrated interplay between the rate 

of arrival ip  (T, T) of average signaling energy and the signal coherence as measured by \p  (t, T) | 

we now define "low energy-coherence" (LEC) conditions to exist if and only if the right side of 

(2.5) is small compared to unity.t   [Note:   In Ref. 2, LEC is said to exist if either of a pair of 

bounds,   one of which is that of (2.5),   is small.] 

Clearly, (2.5) involves detailed knowledge of l(t) and * (w, X) through (1.1); we now present 

another bound* that requires much less information about the transmission and the channel. To 

obtain this new bound we multiply (2.4) on both sides by ^'(t), set j = 0, and integrate on t from 

— T/2 to T/2.    Using (A-13) and regrouping,   we find 

oo , 

4A0 =  ^  *y(w, X) da) dX    f £0(T) rX*(r - X) e_iaJT dr 
-oo -T/2 

T/2 

4  [      dX  max  [*y(w, X)]    ff    $Q(T) £* (t) %*{T -X) 

-T/2 

xX(t-X)dtdT   \       exp[iw(t - T)] dw 
*J—GO 

= 2?r   (       dX   max  *   (w, X)\\            \<Pn{T)\Z   \%{T -X)\Z dr 
J-oo         1   a,        y           J J-T/2 

< 2TT   max | a.'(t) | 2    V      [max *   (w, X)   dX   C           | ^Q(T)1 
2 dr 

and again by (A-13),  the second integral in (2.6) is unity.    Therefore, 

fi0 -£ = XQ < |    max   | 3C(t) | 2] f       max +y{w> X) dX 

(2.6) 

(2.7) 

and we see that if the channel frequency spreading is accompanied by a peak-power limitation on 

the transmitter,   all the /3. may well remain below unity no matter how much transmitter energy 

is expended.    When the transmission modulation %(t) is a constant,   we may precede the steps in 

(2.6) by integrating over all  X;   a tighter bound is then obtained in which max is moved outside 
w 

the integral in (2.7).    This special bound can be expressed simply in terms of the (physical, 

single-sided,   cyclic frequency) spectral density S(f) of the signal received in the absence of noise: 

t Just as low energy-coherence guarantees Pg <<: 1 through the inequality (2.5), one can in turn bound the right 
side of (2.5) by 4^, if it is known that, for any t, yNQ exceeds that fraction of the total average received 
signaling energy Ez lying at those T-times for which |pz(t, T)|   >I/N0/E^. 

X This bound has already been found by Bello,   who assumes discrete rather than continuous multipath. 



r  .-        s(f) A   < max  -^-2 
f 

(2.8) 

This bound,   which is well known,   actually becomes an equality if the observation length  T  grows 

infinite. 

If the observation interval is (—°°, °°),   a companion bound to (2.7) may be found by expressing 

iK(r) and !C*(T — A) in the first line of (2.6) in terms of their respective Fourier transforms 

*0(co) and X(co): 

4 A 0 =   \\    *   (co, A) dcodA I27T)"2 j^J  *Q(co') X(w") 

x exp [—icor + ico 'T + ico "(T — A)] dTdco1 dc 

ff Vw' A) dcodA (2 
"-'-OO 

(co - co") X(co") e"la;"X do 

Then following a development paralleling that of (2.6) and using Parseval's relation: 

„00 

(co)|2 dc ^(TH" dr = 2* 

we find 

*0<  4 
max    X(co)| 

CO 
r max $   (to, A) 

A    y 
dco (2.9) 

Thus channel delay spreading together with a limit on the energy spectral density of the trans- 

mission can also act to prevent the /3. from exceeding unity* 

Also for infinite observation interval,  we can obtain by proceeding from the first line of 

(2.6), 

0 
An        E 

°   <      Z 
max  *   (co, A) 
co, A      y  

27T 7TN      ^    N » 
°   JJ   <t>   (co, A) dcodA 

-oo J 

(2.10) 

where E    is the total average received signaling energy.    This bound has been given in Ref. 2 

and shows an interplay between the average energy-to-noise-density ratio and the time- and 

frequency-spreading. 

tThe bound (2. 9) is actually valid for any observation interval (—T/2, T/2), since a Sturmian Separation Theorem 
(called to the author's attention by the late Dr. M. J.  Levin of Lincoln Laboratory) implies that the largest eigen- 
value of (2.4) is a nondecreasing function of T.    Viewed in terms of Bello's duality theory,      (2.9)  is merely the 
Fourier dual of (2. 7). 



B.    The Generally Suboptimum, SNR-Maximizing Processor 

As pointed out in Appendix A,   practical implementation of the processing (2.1)-(2.2) requires 

solving the generally difficult integral equation (A-10).    We note,   however,   that as N    — « and 

therefore /30 — 0 in (2.1) (all the other /3. — 0 as well,   since fi- is the largest),   d,    approaches 

the explicit limit: 

T/2 
S ^n      ~ 2 2 

dk  =    L    Xj<wjkl + Wjk2> jj      Wk(t> Wk(T) ^z
(t,T) dtd7 

-T/2 

1, 2 (2.11) 

This is obtained from (A-9)-(A-10) and the remark immediately following (A-10).    Because the 

processor (2.11) involves the correlation function ip   (t, T) of the fluctuating-multipath-perturbed 

transmission quite explicitly,   and in fact has been realized specifically as a generalized radiom- 

eter in Refs. 1 and 2,  one is tempted to substitute it in lieu of the optimum radar processor 

wherever the latter is employed in the receiver.    A loss in error performance is generally^ the 

cost of this convenience,  but one may expect the loss not to be severe when 0. is small.    A major 

purpose of this study is to confirm this expectation by placing an upper limit on this loss in terms 

of an equivalent transmitter output reduction,   a limit that involves /3_ and approaches zero with 

The explicit processor (2.11) has the significant property that it achieves the maximum out- 

put SNR among all processors of the broad linear-quadratic class: 

T/2 

P [w(t)] =     if    faw(t) + f(t)] [bw(r) + g(r)] K(t, r) dtdr (2.12) 

-T/2 

where a,   b,   f(t),   g(t),   and K(t, T) are quite arbitrary but not random.   (This is so whether or not 

the signal received in the absence of noise is narrow band.)   To show this,  we make the expansions 

in the eigenfunctions of (A-2): 

K(t, T) =       T       a      4>    (t) *  (T) u mn m        n 
m, n=0 

f(t) = y f >i> <t) 

m=0 

00 

m=0 

whereupon we have,   using (A-l), 

T  <- +      ^ 
T 

(2.13) 

P [w(t)l = a      (aw      + f    ) (bw    + g  ) 1    v " L-i mn'      m       m n     &n 
m, n=0 

(2.14) 

t Should there be just a finite number of (3:, all of equal value and hence equal to (3g, comparison of (2. 1 1) and 

(2. 1) reveals that the processor (2. 11) is in fact optimum.     In general, however,  (2. 11) is suboptimum. 



with the w     independent,   zero-mean Gaussian variates derived from w(t).    The mean value of 
OO   00 

2 
P fw(t)l is seen to be  ab     2     a        w     +       2        a      f    g  ,   so that by (A-6) the change in the 1   v " n     mm   m n     mn m&n J v s 

m=0 m, n=0 °° 
mean output that occurs when a transmission is sent over the channel is equal to  ab     2     a        A    , 

„     mm   m m=0 
where the X     are the eigenvalues of (A-2), which are shown in Appendix A to occur in equal pairs 

for narrow-band situations.    It is straightforward to find the variance of P [w(t)],  using the fact 

that the fourth moment of a zero-mean Gaussian variate is three times the square of the second 

moment.    Again with the help of (A-6), we find that,   when the received signal w(t) is noise alone, 

p [W(t)p-(p [wwir = \—r^)     S a      (a       + a      ) 
mn    mn       nm 

m, n=0 

N 

r   2 
m = 0 

i 2 
y 

n=0 

aa      P    + ba      f 
mnDn nm n 

abN \2 /aDlN  \ M y _ 
m, n=0 

a      (a        + a      ) 
mn    mn        nm 

(abN 
y 
L 

m, n=0 

(a        + a      ) 
mn        nm 

(abN 
V        2 
/      a 

<->       mi 

m=0 

(2.15) 

Thus the output signal-to-noise ratio,   defined as the square of the mean output change divided 

by the variance for noise alone,   is found to have the upper bound: 

i2 

Rp« 

S      a        \ 
n     mm  m m=0 

(2.16) 

X 2.      a 
o .     mm m=0 

By the Schwarz inequality the upper bound of (2.16) is in turn upper-bounded by (2/N   )     2      A    , 
m   0 

but reference to (2.15) shows that this bound can actually be attained by R     if we choose a 

A        a        =0 for m^n,   f      = 0 = g     for all   m,   and a =  1 = b.    Therefore,   by (2.14),   maximum 
m      mn m bm 

2 
output SNR is achieved with the processor that forms     2      A    w    ,   which is recognized as the 

m = 0 
same sum as in (2.11) when w, (t) is substituted for w(t) and narrow-band conditions are invoked 

to give pairing of the eigenvalues. 

Having established the maximum-SNR property of the processor (2.11),   we note yet a further 

upper bound to its output SNR: 

-.2 

R 
2       y 2 2 

^       o    m    ^ o   m=0 o 

T.   K 
m=0 N' 

T/2 
m   (t, t) dt 

7 •T/2 
<£  2 

E   \2 
 z 
N 

(2.1- 
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Here we have used the Mercer expansion: 

00 

<p   (t, T) =      V     X    4>    (t) 4>    (T)       ;        -?«t,  T< ^ (2.18) rz        ' Li       mm        m 2 2 
m=0 

and,   setting t = T,  have integrated both sides of (2.18) over (—T/2,   T/2) with the help of (A-3). 

For the narrow-band systems actually under consideration,  the fact that the eigenvalues appear 

in pairs means that the quantity on the right of the first inequality in (2.17) can be halved,   giving 

a tighter bound. 

Thus we see from (2.17) that a good output SNR requires,   not unexpectedly,   a good ratio of 

total average received signaling energy to noise density.    However,   we have also seen by (2.10) 

how the latter condition by no means need imply that (in narrow-band situations) /3.  = 2X./N    = 

2X„/N    be large.    Hence,   as Bello    has observed,   we can certainly have weak-signal situations, 

as for example are practically the rule in radio astronomy,   where /3n is quite small while the 

output SNR for a radiometer detector is high.    To test situations in which it is suspected that /3_ 
OO OO 

may in fact be large,   one can use the simple lower bound X.     2     \    >   2    X   ,   leading with 

the aid of (2.17) to m=0    "    m=0 

p0 = TT >^r~    • (2-19) 
No       (Ez/NQ) 

(This can be tightened,   if desired,   by replacing E    by the average signaling energy received just 

in the observation interval,   rather than over all time.) 

Aside from its use in (2.19),   why are we interested in the value of the maximized output 

SNR? — especially since some doubt is cast on its usefulness as a criterion by the fact' that the 

error-optimum detector (2.1) or (A-9) must generally have a lower SNR than the suboptimum 

detector (2.11).    The answer is that for binary symmetric communication over the dual channel 

and error-optimum reception,   it is possible to obtain (as will be shown in Sec. IV) bounds on the 

error probability in terms of this maximum SNR R — bounds that are close in terms of trans- 

mission amplitude when /3. is small.    Furthermore,   through the bound established in Sec. Ill on 

the effective transmission-amplitude reduction associated with the use of SNR-maximizing proc- 

essors rather than ones that are error-optimum,   we can also bound the error probability of the 

suboptimum SNR-maximizing detector in terms of its output SNR.    Whereas exact error prob- 

abilities are difficult to determine for either type of reception,   the maximum attainable SNR is 

relatively easy to evaluate;   squaring (2.18),   integrating t  and   T  over (—T/2, T/2),   and using 

(A-3), we find (remembering that in narrow-band situations there are a pair of equal X     for each 

T/2 

"m> 

OO OO 

R = : 2   y 
o  m=0 

x2 - m y /32 = 
m=0 

2-7     \\     ^z^' T) dtdr       ' (2.20) 
N 

-T/2 

1 *3 t As a point of interest, Rudnick      has found that with a definition of output SNR that differs from the one given 
above, maximum SNR is achieved among a broad class of processors (not just mixed linear-quadratic) by one whose 
output is a fairly simple function of 
earlier, attributing it to R. Hines.) 
output is a fairly simple function of (2. 1), the error-optimum output.    (Sebestyen      actually noted this result 
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C.    Derivation of Error Probabilities for Optimum Reception 

In order to determine error probabilities for reception that uses the optimum processor 

(2.1),   we need to know the statistics of the observables w., , and w.. , that appear in (2.1) and 
JKl ]K<i 

(2.2).    It is established in Appendix A that the w.,  .,   w.. ,,   j = 0, 1, 2, . . . ,   k =  1 or 2,   are mutually 
]Kl       jk<: ^ 

independent,   zero-mean Gaussian variates having variance a, X. + (N /Z),   where a,   is unity or 

zero depending on whether or not there has been a transmission over the k*h channel.    Those 

variates for k = 1 are also independent of those for k = 2 by virtue of the assumed independence 

between the channel disturbances. 

Multiplying by 4/N   ,   we obtain from (2.1), 

4        0        "    /M1 +ak/3 ) v 

^2dk=    I      J    (1+V      ' ;       k=1'2 (2-21) 
N

o j=0 J 

where the v.,   are mutually independent for all  j, k,   and each is the sum of a pair of independent, 

squared Gaussian variates of zero mean and unit variance.    Each v.,   is thus distributed as a 

central chi-square variate of two degrees of freedom,   and they therefore all have the probability 

density 

p(v) 

/ 1 \     -v/2 .   „ (y) e     ' ;       v > 0 
(2.22) 

0 ;        v < 0 

and the characteristic function 

e^v =   (1-21^)   1      ;       i = V^T       . (2.23) 

In radar we deal onlv with d,  ,   k = 1 or 2,   and announce that there has been a transmission 

over the k     channel if d,    exceeds some decision level DN   /4;   otherwise,  we decide that there 
k o ' 

has been no transmission in that channel.    Here we are interested in the probabilities of the two 
o 
M' types of decision error that can occur — PM,   the probability that the optimum detector misses 

the transmission because d,    chances not to exceed DN   /4 even though a,   =  1,   and P_,   the prob- k o' f      k F • r 
ability that there is a false alarm because d,   happens to exceed DN   /4 even though a,   = 0. 

In dual-channel communications as earlier described,   an error is committed if (d° - d.°) 

fails to exceed the decision level DN   /4 when a, =  1,   a.  = 0,   or if (d° — d.°) exceeds DN   /4 o 2 1 v2 1 o 
when a? = 0,   a.  =  1.    Since the v.,   of (2.21) are statistically identical as well as mutually inde- 

pendent for all j  and k,   a simple argument involving an interchange of the k = 1 and k = 2 indices 

shows that the probability for the latter type of communication error is the same as that for 

(d? — d. )  being  less than —DN   /4 with a.    = 1,   a    = 0.    In particular,   the two communication 

error probabilities are equal when D = 0,   which is the setting used for binary symmetric com- 

munications.    [There is zero probability that (d? — d. ) is exactly equal to the decision level.) 

Therefore,   in the communication situation we need consider only the a, = 1,   a.  = 0 case,   but 

must deal with all real values of D.   

In terms of its characteristic function e ^  ,   the probability that the decision quantity  d  [which 

is d,    for radar,   (d?  — d . ) for communications] fails to exceed DN   /4 is the same as the prob- 

ability that it is less than DN   /4,   and is given by the contour integral 

1 1 



(-^H DN' 
P[d< =  P d < = (2 

.-1   f     ,   .   .-1    -iu.D ?r)       \      (-in)      e    r     exp 
i4|j.d 

N' 
dji (2.Z4) 

Here  C   is a line parallel to the real axis and displaced from it by any positive imaginary amount 

that is less than the smallest positive imaginary coordinate of any singularity of exp[i4(id/N   ], 
z 

integration being in the direction of increasing real coordinate.    In all cases,   4d/N    is,  by 

(2.21),  a weighted sum of the independent variates v., ,   so that its characteristic function is the 

product of the characteristic functions of the individual terms of the sum.    The individual charac- 

teristic functions are given by (2.23) with c, n substituted for n>  where c,   is the weight asso- 

ciated with v., . 

Referring to (2.21) with a,   = 1 and using (2.24),  we find for the radar situation, 

pS •,2">" i 
e    ^    dp. (2.25) 

'I   (-in)    n    (1 
1 = 0 

2i/y) 

Similarly,   with a,   = 0, 

Pp = (2ir) 
-i(jiD   , 

e    n     dn 

- (' 
2   (-in)    II 

j=0 

2i/3 ,1 

1 + 0. 

(2.26) 

The contours C    and C? can be any lines paralleling the real axis and having a positive imaginary 

coordinate. 

A closer relationship between (2.25) and (2.26) can be established by choosing C'j to have an 

imaginary coordinate that is larger by i/2 than that of C^.    Then making the substitution 

)JL = n' — i/2 and dropping the prime,   we have 

1 -P (27T) 
•1    -D/2 e      ' n 

3 = 0 

T + /3.) 
>C 

1   (-in 1/2)     H    (1 
J=0 

2i/ijHL) 

density of d,u for a,   = 0 to that for a,       1,   evaluated at d,° = DN   /4,   is found to be just e" J k k k 

The similarity of the contour integrals in (2.27) and (2.25) is a feature peculiar to optimum 

processing.    By differentiating (2.25) and (2.27) with respect to  D,   the ratio of the probability 

n    (1 + 13.).    This is a result of d° being monotonically related to the likelihood ratio and hence 
j=0 J k 

being a sufficient statistic,   so that it is a measure of the likelihood ratio taken on its own prob- 

ability distributions under the two hypotheses.    '        As we shall see in Appendix B,  this feature 

of optimum processing can be quite useful. 

For the communication situation the output from the optimum processing is d = (d. d°), 
and from (2.21) and (2.23) we find for a., =  1, a. = 0 that the characteristic function of 4d/N ^ is: 

exp 
i4nd 

L X 

n (i 
3=0 

2i/3.n) 1 + 
2i^n 

(1+/V 
(2.28) 

Substituting (2.28) in (2.24),   letting n = (i + 2n')/4 as suggested by Pierce,    with  n' running along 

the real axis as a permissible contour [the smallest positive imaginary coordinate of a singularity 
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being i(l + /3  )/(2j3  )],   and then dropping the prime,  we have for the probability of error at the 

decision-level setting DN   /4 

Pg(D) = (2TT)      e   ' II    (1 +/5j) 
ij=0 

r- J-00    ,   1 

exp [—ifj.D/2] d(i. 

(7-ln)    n    [(1 +/J /2)2 + (/3 u)2] 
j=0 * J 

(2.29) 

When D = 0, the integral in (2.29) becomes purely real with limits (0,°°); this is Pierce's result, 

which again is a consequence of the processing optimality, and which will receive further atten- 

tion in Sec. IV and Appendix B. 

III.   AN UPPER BOUND TO EQUIVALENT LOSS IN TRANSMITTED ENERGY 
ATTRIBUTABLE  TO THE USE OF SUBOPTIMUM, SNR-MAXIMIZING PROCESSORS 

A.    Development of the Bound 

In Sec.II-B we introduced the SNR-maximizing processor (2.11). This processor has the 

merit of being quite explicit in its specification, but suffers from generally being suboptimal. 

When it is used in a radar receiver,   for example,   the false-alarm probability P„ for a given 

miss probability PM will in general be higher (and certainly will never be lower) than that for 
s o the optimum detector operating with the same miss probability (PM = PM).    (It follows that the 

same statemenUmust be true with the false alarm and miss probabilities interchanged.) 

Similarly,   in the communication situation,   let us suppose that with either the optimum or 

the suboptimum processing there is the same probability of mistaking "off" in the first channel 

and "on" in the second (a. = 0,   a_ = 1) for the reverse transmission (a. = 1,   a~ = 0).    This is 
2 ? 

accomplished by adjusting the respective decision levels D  N   /4 and D  N   /4 so that the error 
o s probabilities P   (D   ) and P   (D  ) are equal.    Then with the suboptimum processing the probability 

of mistaking "on" in the first channel and "off" in the second for its converse is generally greater 
s o (and is never less) than that with optimum processing ["i.e.,   P   (—D  ) > P   (—D  ),  the k-interchange 

argument used earlier on (d?  — d   ) also being valid for the suboptimum detection].    It follows 

that in binary symmetric signaling with D    = 0 = D  ,   the (now single) error probability for the 
s o suboptimum processing generally exceeds that for the optimum processing [P   (0) > P   (0)]. 

The statements made in the preceding two paragraphs are a direct consequence of what is 

meant by error-optimum processing,  to which statistical detection (or decision) theory is ad- 
7 8 

dressed, '    and will not be proven here. 

In assessing the loss in system performance that occurs in favoring the suboptimum,   SNR- 

maximizing processing for its relative engineering convenience,   a measure that is reasonable 

from an engineering standpoint is the decrease in transmission amplitude that will degrade the 

error performance for optimum reception to that obtained with the suboptimum processing and 

the original amplitude.    We restrict our attention solely to changes in transmission amplitude 

because,   in general,   the {/3.) that specify the error probabilities through (2.25),   (2.27),   anil 

(2.29) depend in complicated ways [see (2.3)-(2.4)| on the transmission and channel scattering 

function.    In shrinking the amplitude,   we at least know by (2.4) that the {(!.} will all be reduced 

by the same factor as is the square of the average amplitude,   or the transmitted energy.    This 

is essentially a conservative policy;   moreover,   there may well be restrictions on the bandwidth 

of the transmission or other waveshape limitations that must be observed — it is likely that such 

constraints will still be satisfied in the amplitude reduction. 

1 i 



From the earlier observation,   made in connection with (2.11),  that the suboptimum process- 

ing approaches optimality as /?„,  the largest of the £.,  approaches zero,  we may expect the loss 
in system performance caused by suboptimum processing to decrease with 0..    In agreement 

with this expectation,  we shall now prove that the loss never exceeds 10 log.n(l + /?_) decibels 
in equivalent transmission reduction,   either for radar or binary communications.    Because of 

the complicated way in which the error probabilities depend on the {#.}, one cannot in general 

hope for more than an upper bound to the loss;   even if the loss could be assessed precisely,   it 
would depend in detail on all the {/?.},   and would no doubt be a very unwieldy expression. 

To obtain the above bound,  let us imagine a new,   "clairvoyant" receiver containing a pair 
of processors that,  like (2.1) and (2.11),  have for their outputs sums involving the squared ob- 
servables w., ., w., _,, jkl'     jk2 

Z              Ml + P-) (w-i A + w-?->) 
H c        y     j'        'j'      jkl jk2'  _ 
ak  "    L   1 +/J   [l +0   + a  (p    -p )]/(l +/3  )      '       «-»•* l*-») 

i = 0 J J        K J u 

where these observables are obtained from the received signals w,(t),   w?(t) through (2.2).    This 

receiver is termed clairvoyant in that,   as indicated in (3.1),   it is assumed to know the values 

of a. and a? and hence to know what transmission has taken place.    However,  this information 

is not used directly in making the decision;  rather,  decision is based on the values of d.   and 

d?  in the same way that it is for the optimum and the suboptimum,   SNR-maximizing processor 
outputs. 

Referring to (2.11),   we see that when a,   =1,   d,    = d, ,   and that when a,   =0,  d,   > d, ,  for 
any received signal w, (t) that is simultaneously supplied to the clairvoyant and suboptimum re- 

ceivers.    In radar,  therefore,  both receivers will have the same miss probability for the same 
decision-level setting,   whereas the clairvoyant receiver will have a false-alarm probability that 

is no less than that of the suboptimum receiver. 
By the same token,   when a? = 1,   a. = 0 in binary communications,   the deciding difference 

c c (d? — d, ) for clairvoyant reception is never larger,  for given w.(t),  w?(t),  than that for the 
s        s suboptimum processing (d? — d   ).    Thus for any given common setting of the decision level, 

positive or negative,   the suboptimum receiver has no higher an error probability than the 
clairvoyant.    We conclude that both for radar and for binary communications,  the suboptimum 
receiver cannot be outperformed by the clairvoyant receiver,   and we turn our attention to the 

performance of the latter. 
? 7 

Recalling that the sum (w., . + w., ,) can be written (a, X. + N /Z) v., ,   with the {v., } as in 
(2.21),   and multiplying (3.1) by 4/N2,   we find upon examining the a,   =  1 and a,   = 0 cases sep- 

arately that (3.1) is identical to (2.21),   except for having /3.(1 + /3.)/(l + /?„) substituted for /3. in 
(2.21) and the result multiplied by (1 + /3„).    Thus the error probabilities for the clairvoyant re- 
ceiver are identical to those obtained with optimum reception in a new system having,   in lieu of 
the noise-scaled eigenvalues {/3.},  the reduced eigenvalues {/3.(1 + /?.)/(l + 0n)},   and having the 

decision level set at (1 + Pn) times that of the clairvoyant receiver in the original system. 

We have thus shown,  by means of the clairvoyant receiver as a "bridge," that for given 
transmission and channels the suboptimum receiver is no worse in error performance than is 
optimum reception in a new system whose eigenvalues (signaling energies in the observables 

{w-kl},   {w-k2}) are reduced. 
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Two gaps remain in the development of the loss bound.    First,  the eigenvalues are in general 

not uniformly reduced in the new system relative to the original,   since the ratio (1 + /3.)/(l + /3n) 
varies unless all the {/?.} are equal.    As explained earlier,   in seeking a new,   optimum-processing 
system that is outperformed by the suboptimum processing in the original system,   we want the 

eigenvalues of the new system to be uniformly reduced so that the new transmission will simply 

be the original one reduced in amplitude.    We therefore introduce yet another new system in 

which the {(3.} of the original system are even further reduced^ but now uniformly,  to {/3./(l + /3n)}, 
and next need to prove that the error performance of optimum reception in this latest system is 

no better than that of optimum reception in the system having the {/3.(i +/?.)/(1 + Pn)}-    The proof 
is left to Appendix B,   where the sensible result* is obtained that for optimum reception the error 

performance is never improved by decreasing any one of the /3. when the other {/3.} are arbitrary 
but held fixed.    This proof establishes that in a given spread-channel radar or binary communi- 
cation system of the kind considered in this report, the receiver error performance for the sub- 
optimum,   SNR-maximizing processing is at least as good as that for optimum reception,   provided 

-1/2 that the waveform transmitted to the optimum receiver is (1 + /3n)     '    times that sent to the sub- 

optimum receiver. 
With optimum processing and the original amplitude,  the error performance can be no worse 

than with suboptimum processing;  thus the error performance of the SNR-maximizing receiver 
is bracketed between that for optimum processing with the original,   full amplitude and that for 

-l/2 optimum processing after the (1 + /3n) amplitude reduction.    Rather than bounding the sub- 
optimum error performance,  however,   we want to set limits on the effective transmission loss 
that attends SNR-maximizing reception at a given level of error performance.    This second of 
the two gaps previously mentioned is closed again with the help of Appendix B,   where it is shown 
that just as optimum-reception error performance is never improved by decreasing the {/3.},   it 
is likewise never worsened by increasing them.    Remembering that the {/3.} are proportional to 
the square of transmission amplitude,   and assuming that there is some  €  for which the optimum 

-l/2 receiver,   operating with the transmission amplitude reduced by the factor € ,   has the same 

error performance as that for the suboptimum processing with the full amplitude,   we can there- 
by demonstrate that  e   must lie in the range [1, (1 + /30)     ].    The loss attending SNR-maximizing 
processing therefore lies between zero and 10 log., (1 + /3_) decibels. 

B.    Test of the Bound in Two Binary Communication Systems 

The argument just concluded has established,   for any spread-channel radar or binary com- 
munication system of the type considered,   that 10 log.~ (1 + /3„) is an upper bound to the maximum 
decibel loss in transmitted amplitude that is suffered in effect when the suboptimum processing 
(2.11) is used in lieu of the generally more difficult optimum processing (2.1).    A key part of the 
argument involved the introduction of a clairvoyant receiver whose response to any observable 

t Another choice is to reduce the {B.(l + |3.)/(1 + BJ}   to fB.(B   .  /B.)} , where B   .    is the minimum B..    This leads 
I 0 rj rmin   r0 rmin K| 

to 10 logiG^Po/Pmin) decibels as an additional upper bound on the maximum equivalent transmission reduction 
associated with suboptimum, SNR-maximizing processing.    For spread channels the greatest lower bound of 
the {B.}   is generally zero, so that this result is of limited utility. 

1 With the suboptimum, SNR-maximizing processing, however, decreasing an eigenvalue can actually improve 
the receiver error performance - see the discussion following (3. 11). 
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w., . of the received signals is individually compared with that of the suboptimum receiver.    Such 
logic completely ignores the relative importance of the various observables in contributing to 

overall receiver performance;   we may therefore expect the cited upper bound to be rather- 

conservative. 
In order to see how loose this bound may be in particular cases,   and hopefully to aid future 

efforts to obtain a tighter but still universal bound that involves only the largest noise-scaled 

eigenvalue /3n,   we have analyzed two particular communication systems.    Both systems are 

binary symmetric,  the decision level being set at zero.    System I has just two pairs of noise- 

scaled eigenvalues,   of values /3. and /3. = y/3n,   0 ^ y ^ 1,   and is more typical of discrete diversity 
17 18 l u 

communication     '       than of communication over spread channels,   since the latter generally 

involves a countably infinite set of eigenvalues. 
System 2 better fits a spread-channel situation,   but is somewhat nonphysical in that it is the 

limit,   as N — °°,   of a system having a finite number  N of pairs of noise-scaled eigenvalues,   the 
largest pair having value /3_ and the remainder all being equal to vp/N.    In the limit,  the re- 

mainder eigenvalues are all properly smaller than fi~,  no matter what the system parameters 
jin and p  may be.    On the other hand,  the total average signaling energy becomes infinite,  being 

proportional to f3„ + (N — 1) \lp/N;  this does not upset the validity of the present analysis, 

however.' 
In either of these communication systems,  the receiver bases its decision on the sign of 

the quantity 

r N-l 
^.9 -> ~ 

a U        UC 1 \3L6.- 
L j=1 

N-l 

VW021 + w022) + a*l     Z     <Wj21 + Wj222» 

2    ) r i   <• 2    > ,    r      V    /   2 2 
l0(w011+w012) + aXl     L    <wjll +wjl2 

J = l 

(3.2) 

where A    = /3QN   /Z in both systems, X    = yPJi  /Z and N = 2 in System 1, and X    =  (N   /Z) N/P/N 

while N — <*> in System 2.    The first bracketed term in (3.2) is supplied by the processor operat- 

ing from the second channel,   and the second is generated by the other processor.    Adjustment 
of the processing parameter  a   permits us to obtain the suboptimum processing (2.11) when 

a = 1,   and (except for an irrelevant gain factor) the optimum processing when a = (1 + 0O)/ 
(1 + 2X./N  ).    In the same fashion as (2.29) was obtained from (2.24),   infinite integrals can be 
obtained for the respective error probabilities    P  {a, (!„) and    P  (a,/30) for Systems 1 and 2, 
with reception as in (3.2).    Evaluation of the integrals,   where a Gaussian limit is involved in the 
second system for N -• °°,   yields the rather complicated expressions 

19 20 21 
t System 2 falls in a class considered by Hajek     '       and Middleton,      where the expression (2. 1) for the optimum 
processing fails to converge, and yet the likelihood ratio (A-8) is finite positive.    Here an optimum receiver 
exists in principle, but not in the form (2. 1), and it has nonzero probability of error [see (3.4)].   Like (2. 1), 
the expression (2. 11) for the suboptimum processing also fails to converge; so does (3.2), which includes both 
(2. 1) and (2. 1 1).    Therefore the results to be obtained for System 2 should not be viewed as actually attainable, 
but can be approached in a physical system as closely as one may desire. 
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(1 + p  ) (2 + y/3   ) + (ay)2 (1 + y/3   ) (2 + /3   ) + (ay) (2 + /3   ) (2 + y/2  ) 

vp
e<a^0) = 2^ ~ <3'3> 

^ (2 + /JQ) (2 + y/30) (1 + ay + /3Q) (1 + ay + ay £Q) 

and 

pPe(a,/3Q)=  | [1 -erf(>/^74)]- 2(2rr^)   6Xp 

V 
pa    2^~ 

(/J0 + P0) 

_2 
  ? ?    , exp[pa/3„    (a-/?.)] 

x {1 - erf[V4 (2a + I3Q + p£) [f}Q + f)£)-1]} +   2(2 + )3  }  

x{l-erf[-v^74/3n"1(2a -/3  )]} (3.4) 

where 

2   rx    -t2 

erfx = -=- \      e dt      . (3.5) 
\TTT JO 

For the suboptimum processing,   a = 1,   and for optimum processing,   yielding the minimum 

yPe(a. 0O) or pPe(a, /3Q),   a = (1 + /3Q)/(1 + y/3Q) in System 1 and  a = (1 + /3Q) in System 2. 

To learn the loss due to suboptimum processing in System 1 at given values of /3. and y, 

one sets a = 1 in (3.3),   notes the error probability,   and then sets a = (1 + /}„)/( 1 + y/30),   sub- 

stitutes e  /3„ for /3„,   and finds the value of e    that yields the same error probability.    The ef- 

fective transmission amplitude loss attending the suboptimum processing is then 10 log.,, e 

Likewise,   one determines the loss in System 2 at given /3. and p  by determining    P  (1, /3.) from 

(3.4),   substituting e  /3„ and e   p for p~ and  p,   respectively,   in (3.4) and finding for what e    the 

error probability    P  (1 + /3n, /3.) is the same.    (The substitution of e   p for  p   is based on the 

fact that p  is proportional to the squared value of the remainder eigenvalues;  also,   a = 1 + /30 

for optimum reception in System 2,   since these eigenvalues,  while not zero,   are individually 

negligible.) 

Although exact solution for e    is a matter of trial and error,   some insight can be had by 

examining the behavior of the error probability for /3_ near zero and for /3Q asymptotically large. 

After expanding (3.3) about /3n= 0 to terms of order /3A   we find that the loss for System 1 be- 

haves as 

e"1  • 1 +/32   (|^)2   (1 +7'"1 +T"2)"1       • (3.6) 
P0-o u       + y 

2 
The coefficient multiplying /3~  has maximum value (in the range 0 ^ y <J 1) equal to 0.0193 at 

y = 0.35.    At the other extreme,   if we let /3n increase so that both /?„ >> 1 and y/3_. » 1,   still 

with 0 < y < 1,   we find 

tr
_1 ~J{y/3) (l +Y + r2> (Y2 +/3o"1)_1 (3-7) 

-1 -l/2 
and the value of y that maximizes e       for a given large /3„ is,   asymptotically,   y = /3Q        .    With 

y  thus set,   we find 
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€r    ~ *   V • <3-8> 

Equations (3.6) and (3.8) show that the bound (1 + jSn) that has been established for e ~    grows 
u r 

progressively more conservative as /?0 •» 0 or 0. -» «°,   at least for this particular communication 

system.    The ratio 0o/(e      — 1),  which is a measure of the tightness of the bound,  has a minimum 

value of about 68,   obtained for 0,. around 5 to 6 and y about 0.2. 

An incidental result is 

r    y^ 1+^0   [6(2+/S0)(l+P0) (3.9) 

2 -1 Equations (3.6) and (3.9) suggest that (1 + 0- ) may bound e       when /3   ^ 1 and 0 < y 4 1.    Numer- 

ical checks made at selected points in this (/3Q, y) region support this conjecture although no 

proof is yet available for System 1,  let alone for all radar and communication systems. 
3 3/2 For System 2,  expansion of (3.4) about /3n = 0 to terms of order /?.  and p  '     shows that 

-1 2  4 e   *  -1+0OV (2 + T)~  ) (1 - erf TJ) - T)'
1

(2/NT7T) 
 2~ 

(1 - erfr]) + rj(2/V7r) e"71 

(3.10) 

where T; = \Tp/pQ.    The coefficient multiplying 0O  in (3.10) has a maximum value of 0.0995,  which 

is achieved at r\ = 0.94.    This compares with a maximum coefficient of 0.0193 for System 1. 

If i] = *fp/p~ is held constant and /30 is made large,   we find,  by studying the exponential error 

compression that takes place in (3.4),  that 

er :—*— (3-11) 

regardless of the value of r\.    Comparing (3.11) with (3.8),   we see that the System 2 is superior 

to System 1 in testing the bound at high fl- as well as at low.    In fact,   the ratio /3n/(e       — 1) 

reaches as low as 13.3 at /3„ = 5,   p =  16,   compared to the minimum value of about 68 for System 1. 

We conclude that any universal upper bound to the loss that is of the form 10 log.0 (1 + k/3.) 

cannot have k less than 0.075. 

Finally,  it may be noted by setting a = 1 in (3.4) that when p  is large and /3„ exceeds 2,  in- 

creasing /3. can actually increase the error probability.    Thus,  the reasonable notion proven in 

Appendix B,  that increasing any one of the eigenvalues cannot cause degradation in the error 

performance for optimum reception,   certainly is not true of reception using the suboptimum, 

SNR-maximizing processing. 

IV.   ERROR PROBABILITY RELATED TO MAXIMIZED OUTPUT SNR 
FOR BINARY SYMMETRIC COMMUNICATIONS 

A.    Preliminary Remarks 

We have shown in Sec. Ill that if the largest noise-scaled eigenvalue fi~ is small compared 

to unity,   little effective loss in transmission amplitude is suffered in a spread-channel radar or 

communication system when reception employs the explicit,  but generally suboptimum,   SNR- 

maximizing  processor   (2.11)   in lieu of the implicit,   error-optimum one   (2.1).    This result 
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confirms processor output SNR as a legitimate receiver design criterion when 0n « 1,  but does 

not make use of the actual value of output SNR attained by the SNR-maximizing processing.   Since 

[as shown in (2.20)] this maximum value  R  is just as explicit as the receiver that yields it,   one 

would hope that it could be related to error performance,   so that output SNR could be used as 
a convenient overall system performance criterion and thereby guide transmission design as 

well as receiver synthesis. 
The results of this section fulfill this hope within the context of binary symmetric communi- 

cations.    For such systems we develop bounds on the error probability for optimum reception, 
bounds that for any particular transmission-channel combination involve only /3. and the output 

SNR  R of the SNR-maximizing processing.    Through the decibel-loss bound log.n (1 + Pn) already 
established for maximum-SNR reception,  we can then bound the overall effective loss attending 

maximum-SNR design by a function involving only the maximum output SNR R     available under 
the system constraints and /3.    ,  the associated maximum-R value of /30. 

By using these results one can show,   for example,   that when /?_ ^ 0.1,   the error probability 
2 for the optimum receiver is given by a simple monotonically decreasing function of f   R,   where 

e  lies between 0.844 and 1.0,   and that when /?„     < 0.1 the overall "design loss" associated with 0m 6 

maximum-SNR transmission and reception is less than 1.2 db.    If in addition to the condition 
Pn     < 0.1,   interest is confined to situations in which the error probability for either receiver 
is less than 0.01,  the design loss will be less than 0.9 db;   even small design-loss bounds are 

met with yet lower /3n      and error probability. 
With regard to the foregoing,   let us define "design loss" more explicitly than was done at 

the end of Sec. I-A,  where the term was first introduced.    Suppose that in a spread-channel, 
binary symmetric communication system one is somehow able to find,   within specified con- 

straints,  the transmission that minimizes the error probability for optimum reception.    Then 

this transmitter-receiver combination yields the minimum error probability that is attainable 

for the given channel under the specified constraints,   and transmitter-receiver design for maxi- 
mum output SNR can lead to no better error performance.    If,  however,  the "design loss" is 

known to be less than  M db,  then one can be sure that the error performance obtained with 

maximum-SNR design is at least as good as that resulting from minimum-error design,   if the 
latter is made to suffer the handicap of an M-db reduction in transmission amplitude.' 

No design-loss or error-probability bounds have yet been obtained for binary communications 

in which the decision level is nonzero.    For radar,   we do have the rather weak but quite general 

bounds:* 

(P° + P°) 
PFPM^Pe      ;       PF + PM>Pe      ' * 2     •    > Pe° <4^ 

t Equation (2. 1) indicates that in order to maintain optimum reception, a readjustment of the processing is gen- 
erally required after such an amplitude reduction funlike the maximum-SNR processing (2. 1 1)];   in the absence 
of such readjustment the error performance of the handicapped design can be even worse. 

t These bounds resulted from discussions with Drs. R.S. Kennedy and B. Reiffen of Lincoln Laboratory. 
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which loosely relate radar system performance to that of a binary symmetric communication 

system.'   Here P    is the error probability for any binary symmetric communication system that 

uses dual,   statistically independent and identical channels and identical channel processors, 

where the sign of the processor output difference determines the binary decision.    The quantities 
Rp, and PM are the false-alarm and miss probabilities,   respectively,  for any given decision 

level D    in a radar system that is identical to the given communication system except for the 

absence of one channel and its processor..  We note that when attention is confined to error- 
optimum processing,   as indicated by the "o" superscripts,   an improved lower bound is available 

for the sum of the radar error probabilities.    This third bound in (4.1) is the simplest to estab- 

lish,   for it merely affirms that min (P_ + PM)/2,  the lowest error probability attainable when 
Dr 

a binary symmetric communication system is hampered by the removal of one of the channel 
outputs from its receiver input,   cannot be less than P   ,  the lowest error probability attainable 

with this output restored. 

The first bound in (4.1) is obtained by noting that PpPM is the probability that the output of 
the processor that receives noise alone exceeds D ,   while at the same time the output of the 

other processor falls below D    even though signaling energy reaches it.    This joint event implies 
that the output difference has such a sign that an error is produced in the communication situa- 

tion;  hence the probability P   of communication error is at least as great as P,,P„,   the prob- 
ability of the joint event.    Similar reasoning for the contrary joint event leads to (1 — P_) (1 — PM), 

and hence (1 — P„ — PM),   being upper-bounded by (1 — P  );   this yields the second bound in (4.1). 
We now develop the earlier-mentioned error bounds for spread-channel,   binary symmetric 

communication,   first obtaining from them the cited design-loss bounds.    We then show in Sec. 
IV-C, as an incidental result,   that in some circumstances tight error bounds can be achieved. 

B.    Analysis for Decibel-Loss Bounds 

Equation (Z.Z9),   with the decision level DN   /4 set at zero,   gives the error probability for 

optimum reception in spread-channel,  binary symmetric communications.    Noting the even and 
odd symmetry of the real and imaginary parts,   respectively,   of the integrand in (2.29) after it 

has been rationalized,   we have 

Pe°(0) = F({^})   G({/3jf) (4.2) 

where 

t From (4. 1) and (4. 1 1) we obtain the bound for optimum spread-channel radar reception and any decision level 
(and hence for any radar receiver as well): 

Pc + P,°i > 1 ~ «rf v/R/4      • r        M 

It is believed that this bound remains valid when tightened by the replacement of R/4 with R/8.    (There would be 
no question, were the receiver output Gaussianly distributed, with the same variance for echo presence as for 
its absence.)   Appendix C outlines a derivation of the improved bound, which calls on a theorem (interesting in 
both a statistical and a circuit-theory context) that is as yet apparently unproven but that seems to be true. 
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/3,\"2 
F({^j}) = n <* + Pj) (i + ^) (4.3) 

•,TT/2 .    p7r/^ r ,p. tanOiZi 

«*P»" T 5L   ae n H+nr)] 
j=0 J 

-1 
(4.4) 

and where the transformation 2\x = tan 6 has been made. 

The terms in (4.3) have the bounds 

exp 

2, 

^ (1 + P-) 
(»$ 

^ exp 
/3 , v-2-1 

('•?) (4.5) 

This can be verified by observing that (4.5) is true for p. = 0,   and then by finding that the logarith- 

mic derivatives of the quantities in (4.5),   taken with respect to p.,   rank as in (4.5) for p. > 0. 

Thus,   since p. < p 

exp [- |] < F({/J.}) < exp   - ^ (l + -^j (4.6) 

where 

R=  Z (4.7) 

= 0 

is,   by (2.20),  the maximized processor output SKR. 

Equation (4.4) likewise can be bounded in terms of /3„ and  R.    First we note that each term 

of the product in (4.4) can be upper-bounded using 

1 + x < ex 

and that the product itself certainly exceeds unity by the sum of the ratios that appear in the terms. 

Thus5 

1   r11/2- 7 
exp[-Stan   e]de<G({/3.})«i \ 

J \J ( IS 
1   CW/Z 2      -1 d0 (1 + Stan   6) (4.8) 

/here 

5 • 2 (nVj 
J = 0 

(4.9) 

An individual term in (4.9) has the bounds p. /4,   [/?./(2 + p„)]  ,   so that by (4.7),   S  lies between 

R/4 and (R/4) (1 + 0n/2)     ; evaluating    the integrals in (4.8) and employing these bounds on   S 

we have 

\     *a I A Po 
2 + 2 1   e

R/4(l_erf Jf) < Gtf^}) * 
/3„\-2 

% (• • '-§) (4.10) 

where the error function is defined in (3.5).    Multiplying (4.6) by (4.10),   the error probability 

of the optimum receiver is found to be bounded as 
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\ (1-erf J^)<P°(0)4 
exp[-(R/4) (1 +/30/2)"Z] 

2 [1 + J(R/4) (1 +/30/2)"2] 

The right member of (4.11) can be written 

^ 2 

2(l+Gl)= Id-erffG/MG,)]} 

(4.11) 

(4.12) 

where G. = vR/4/(l + /3Q/2),   and there is a unique solution for* (G,).    Some selected values of 

«(G.) are given in Table I* 

TABLE  1 

r _  yR/4 
°1      (1 + P0/2) 

0 0.2786 0. 3691 0.5467 1.061 2.061 3.053 4.046 00 

"(G,) Gr0    A 

= 1.1284 

1.1145 1.1074 1.0934 1.0613 1.0303 1.0177 1.0115 1 

Equations (4.11)-(4.12) effectively bound the error probability for optimum reception to 

within 10 log1Q{(l + /3Q/2) K[N/R/4/(1 + /3Q/2)]}  decibels.    Applying (4.11)-(4.12) to obtain a bound 

on the loss associated with maximum-SNR design of a binary symmetric signaling system,   we 
g 

recall from Sec. Ill that the error probability P   (0) for SNR-maximizing reception will not ex- 

ceed that for optimum reception if the latter is given the handicap of a 10 log,n (1 + /3_) decibel 

reduction in transmission amplitude.    Dividing both /3n and \TR by (1 + /3n) accordingly,   it follows 

that P   (0) is upper-bounded by the right member of (4.12) with (1 + 3/3/2) replacing (1  + /3n/2) 

in G,,   where   R  is the maximum output SNR Ft      attainable under the system constraints,   and 1 m J 

/3„ has the value 0.      attending the SNR maximization. ^0 0m & 

Turning now to minimum-error design,   there is a transmission that yields an error prob- 

ability P   (0)    .    that is the minimum attainable under the system constraints and that with SNR- J     e      min J 

maximizing reception would provide some output SNR R    .      •   P   (0) cannot be less than the 6 H v ' minP       e*    min 
left member of (4.11) with R = R    .   —,.    Thus if this minimum-error transmission is reduced minP 
by 10 log.„{(l + 3/30    /Z) «[JR    /4/(l + 3/3.    /2)]}  decibels while the receiver is kept optimum, 

the resulting P   (0) will,   by the argument of the preceding paragraph,   be at least as great as 

the error probability P   (0) obtained with maximum-SNR design and no transmission-amplitude 

handicap.    [Here we have used the monotonicity of the left member of (4.11) together with the 

fact that R     :>. R    .   „.]   This establishes that the design loss associated with the use of the SNR m '    minP ' s 

criterion cannot exceed 10 log.0{(l + 3/3„    /Z)   «[jR    /4/(l + 3/3_    /Z)]} decibels.    The examples 

cited in the preliminaries to this section are obtained from this bound and the one given at the 

beginning of the preceding paragraph,   together with  reference to (4.11) and  Table I. 

t Note that R and fL in G. cannot in general be independently specified, since by (4.7)   R cannot be less than 
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C.    Analysis for Tight Error-Probability Bounds 

In certain situations it is possible to have error-probability bounds that are quite tight in 

the usual sense,   rather than as measured indirectly,   by an effective decibel difference in trans- 

mission amplitude.    Such special situations exist when /3n is small not only compared to unity 
-1 but to R     ,   the reciprocal of the maximized output SNR,   and where in addition this SNR is unity 

or higher. 

Under these circumstances,  we can return to G({/3.}) of (4.4) and obtain for it a tighter upper 

bound than that of (4.10).    The bound is established through a partial expansion of the product in 

(4.4),   leading to the inequality 

n 1 + 
(&)• 

> i 
402\ A tfS/L) 1 - 

S(2 +/J0)' 

6„3 
x  S 3/3 0 

S(2 +/?Q)   J 

3|8 2i 

R 
i + (xV)2 + • (xV) 

—6~~ 

2 — 2 
where  R  and  S are given by (4.7) and (4.9),   respectively,   and V    = (R/2) (1 + Pn/2) 

involving higher powers of  V could be obtained if so desired.) 

Substituting (4.13) in (4.4) and evaluating the integral,   we find 

(4.13) 

(Bounds 

G({0.}U(2--^ 
6/3 

2\-l 
 1 -0.328058V-0,259672 V2+ 0.1 5683 8V3 + 0,124144V4  

1 + 0.791542V-0.373462V2-0. 29561IV3 + 0.266012V4 + 0.210560V5 

^ 1.04503    2 - 
(V'r 

exp (' * T°) 
-2 

1 — erf 1 (' * ?) 
-2 

for /3Q < (4.14) 

where the higher upper bound,   which was established numerically,   becomes an equality as 

(R/4) (1  + ft  /Z)      approaches infinity.    Replacement of the upper bound in (4.10) by the right 

member of (4.14) leads to a similar change in the upper bound of (4.11),   and we now have 

*' 4 K Pe>(0 
3^ 

R 1 — erf. 
0n\"2 

(' * T°) (4.15) 

The final step is concerned with the ratio of the two bracketed terms in (4.15).    We develop 

the bounds,   using (3.5), 

-t2 

1 « 

1 - erf a + (2/\llr)    f        e        dt 
1 -erf(a-b)  _    a-b  < i + (2/V7) b exp[-(a-b)Z 

1— erf a 1— erf a v 1 — erf a 

2b 

\ - 
4 1 + l-2^)   (1  + aVrr) exp [2ab - b   ]      ;        0 < b < a (4.16) 

Here Pierce's bound" 

1 - erf a > ;       a >0 
1 + a v it 

(4.17) 
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has been used.    To apply (4.16) we set a = N/R/4,  a -b =   /(R/4) (1 + /3  /2)~2,   and find that 

0<:b<?  -f (4.18) 

Since /3Q will certainly be less than 2 for weak-signal conditions,  the condition 0 < b <; a on (4.16) 

is satisfied,  and we have 

1 < 
1 - erf J(R/4) (1 + PQ/Z)' 

1 - erf N/R/4 
< 1 + 1° /R ,   /R\ 

2    \2   +-J *) exp 
R/30(l +/JQ/4) 

4(1 + /3Q/2)\ 

^ 1 + 1 <3/30 I + /Voxp m (4.19) 

where the inequality (R/2) + N/R/2 -£ [3(R/2) + l]/2 has been employed. 

Taking the ratio  r  of the upper bound in (4.15) to the lower bound and using (4.19), 

2N -1 

1 ^ r < 1.05(1 - 
30, 

1 + 0.25(3/3Q ^  +/?Q) exp ¥1| (4.20) 

and we can therefore determine the optimum-reception error probability to within ±2.5 percent 

if /3QR « 1 and R ^. 1.    This also proves to be true for the suboptimum,   SNR-maximizing recep- 

tion under the same conditions when one applies the receiving-loss bound 10 log.n (1 + /3n) decibels. 

V.    CONCLUSIONS 

This study has been primarily concerned with confirming that under frequently met spread- 

channel conditions,  one can safely employ a receiver output-SNR system design criterion 

(specified in Sec. II-B),   even though error-probability optimization is the actual goal.    In contrast 

to error-probability criteria,   which lead to having to solve an integral equation (A-10) for the 

optimum receiver and to even more difficult problems in finding the best transmission,   this out- 

put SNR is notable for its mathematical simplicity,   and for its consequent attractiveness in 

engineering terms. 

A condition under which overall system design may properly be based on maximizing the 

processor output SNR at the receiver,   is that there in a sense be a small channel SNR.    This is 

a "low energy-coherence" (LEC) condition that by no means need imply small output SNR (poor 

system performance).    Specifically,   we have shown that the maximum output SNR  R  is the sum 

of the squared,   noise-scaled eigenvalues (or coordinate signaling energies) {/?.} - {2X./N  }   (w)iere 

N    is the noise spectral density),   while fl~ =   max /3. is an index of the maximum "design loss" 
j J 

sustained in employing the SNR criterion.    ("Design loss" is defined as the reduction in amplitude 

of the transmission,   keeping its waveshape unchanged,   that lowers the best error performance 

attainable under given system constraints to that obtained using maximum-SNR transmission 

and receiver design under the same constraints.)   Since we need only be sure that /3„ is small, 

however,   all that is really required is a good upper bound to li-. in terms of readily determined 

quantities.    Such bounds are given in Refs. 2 and 4,   among them being the LEC bound (2.5) and 

the spread-channel bound (2.7). 

Section III establishes that the portion of the design loss that can be attributed to the use of 

a SNR-maximizing receiver is,  for a given but arbitrary error performance,  no greater than 
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10 log.0 (1 + /3n) decibels,   this being true for a wide variety of radar and binary communication 

systems.    Section IV shows,  with the aid of Pierce's work,   that for the class of spread-channel, 

binary symmetric communication systems,   extension of the output-SNR criterion to the design 

of the transmission as well as of the receiver,   results in an overall design loss not exceeding 

10 log^i*1 + 3'30m//2)   Kf7Rm//4//(1 + 3/30n/2)^ decibels-    Here K(G!> is less than Z^ and 

approaches unity as G. increases (error probability decreases),   R     is the maximum output SNR 

attainable under the system constraints,   and /3„      is the attendant maximum-SNR value of Bn. J 0m ^0 
These design-loss bounds are the main results,  but there are a few incidental findings. 

Section II demonstrates,  for example,  that among a broad class of mixed linear-quadratic re- 

ceiving processors,  the processor that attains maximum output SNR corresponds to the asymp- 

totic,   N    -»°°,   solution of the integral equation (A-10) for optimum processing.    Another result 

forms part of the development of the receiving-loss bound 10 log,n (1 + /3n) decibels,   where it 

has been necessary to prove (in Appendix B) the notion that with error-optimum reception,   in- 

creasing or decreasing any or all of the noise-scaled coordinate signaling energies {p.} cannot, 

respectively,   worsen or better the error performance.    This notion is not true of the suboptimum, 

SNR-maximizing reception,  however,   as is shown by the performance of a particular communi- 

cation system analyzed in Sec. III-B. 

Under the more stringent conditions that /3„ be small compared to R    ,  the reciprocal of 

the maximized output SNR,   while this SNR also is at least unity,   it has been possible (in Sec. 

IV-C) to obtain error-probability bounds for binary symmetric communication that are tight to 

within ±2.5 percent.    Under general LEC conditions,   however,   the error-probability bounds will 

be loose in the normal sense although good in terms of bounding the design loss quite tightly. 

In establishing the design-loss bounds we have confined our attention to radar,   or equivalently 

to on-off binary communications,   or to binary communication systems that use a pair of identical, 

statistically independent channels with the same waveform transmitted over either channel.    Al- 

though the channels in this study have been assumed to be describable in terms of scattering 

functions [see the discussion associated with (1.1)],   this is not an essential restriction.    All that 

is actually required for the cited loss bounds is that the signal received in the absence of the 

white channel noise be narrow-band Gaussian (having the same statistics when received over 

either channel in the case of dual-channel binary communications) with correlation function <p   (t, T). 

The largest eigenvalue A„ = N /3n/2 is then that of the integral equation (A-2),   and (2.5) remains 

as a general upper bound to /3n.    It even seems likely that the narrow-band assumption is not 

necessary,   although many of the equations would have to be reworked for single rather than 

paired eigenvalues. 

The two particular communication systems examined in Sec. III-B show that the receiving- 

loss bound 10 log. 0 (1 + /3n) may possibly be tightened''' to 10 log.n (1 + P0) for /3Q< 1 and to 

10 1og(l+   //FT) for /3n > 1,   but that if a bound of the form 10 log. „ (1 + k/3„) is retained,   k   must 

be at least 0.075.    It would be rewarding to find minimum universal design-loss bounds as func- 

tions of /3n and  R,   or failing that,   at least to see how improvement may be made in the bounds 

presented here.    Extension of loss-bound analysis from binary to M-ary communications would 

also be worth while. 

Finally,   since in practical systems there will usually be some inaccuracy in realizing the 

SNR-maximizing receiver,   useful studies might be made of the degradation in error performance 

caused by such receiver mismatch. 

f Some recent and unpublished work of Dr. R. S. Kennedy also suggests that the receiving loss may not exceed 
5 login (1 + PQ) decibels. 
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APPENDIX A 
DERIVATION OF PROCESSOR OUTPUT FOR THE OPTIMUM 

RADAR RECEIVER 

To form the ratio of the probability measure that the signal w(t),   received over one of the 

channels and observed in (—T/2,   T/2),   is a result of transmission through that channel,  to the 

probability measure that it arose from noise alone,   we first need the zero-mean random- 

variable "observables" {w.}: 
J 

-T/2 
v   =   \ w(t) <P-(t) dt       ;       j = 0, 1, 2  (A-1) 

Here the {^(t)} are the eigenfunctions (excluding the trivial one that is identically zero) of the 

homogeneous linear integral equation involving the correlation function <p  (t, T) of the fluctuating- 

multipath perturbed transmission: 

•>T/2 
«>   (t, T) !/  (T) dr = A iMt)       ;        -^<t<^       . (A-2) 

T/2      Z J J  J C C £ 
The {\.} are the associated eigenvalues and form a bounded countable set.    The eigenfunctions 

can be arranged to be orthonormal: 

V 
T/2 10       ;        j 4 k 

^.(t) <PJt) dt = 6^ = (A-3) 
1       ;        j = k LT/2     J k Jk 

although they may not form a complete set.    These properties of the {A.}  and (iMt)} follow    from 

the fact that 

T/2 T/2 

JT   </>2(t, T) dtdr<    jj    </>z(t,t) <pz(r, T) dtdr< (E^)2 < =o (A-4) 

-T/2 -T/2 

and the assumed finiteness of the total average energy E    received in ( — °°,°°). The inequality 

in  (A-4) is   obtained from  the condition that the  square of the  the  correlation coefficient, 

9    {t, r)/[(p   (t, t) u>   (T,T)],   existing between z(t) and Z(T) cannot exceed unity.    The eigenvalues z z z _ 
are also non-negative since &   (t, T) is non-negative definite. 

Because the {(/'(t)} often do not form a complete set,   especially one satisfactory for repre- 

senting a process containing white noise,  we have generally 

ao 

w(t) =    Y    w.f.(t) =/w(t) (A-5) 

J = 0 

in (—T/2, T/2). Therefore, if we replace the received signal w(t) by the set {w.} as the input to 

the receiver, we should also make available to the receiver the difference waveform w(t) — w(t); 

by the equality in (A-5), w(t) can then in principle be recreated from the new receiver inputs and 

no information is lost. By the linearity of all the operations thus far involved and the Gaussian- 

ness of w(t) under either hypothesis, the {w.} and the waveform w(t) — w(t) are jointly Gaussian. 

Letting a = 0 represent the hypothesis that the received signal is solely a sample of noise of 
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spectral density N ,   and letting a = 1 correspond to the other hypothesis,   we find that the {w.} 

are mutually independent under either hypothesis.    This is so because they are uncorrelated: 

T/2 

v.wk = yy *j(t) *k<r) [ 
N  6(t - T)1 

tf.(t) ip  (T) \a<p   (t, T) +     °    7 dTdt 

-T/2 

=   (aXn + -f) iT/2 *iM *k<*> dt =  K + -f) 6jk      :        a = °' 1       • (A"6) 

Here (A-3) and (A-4) have been used.    Furthermore,   all the {w.1- are independent of w(t) — w(t): 

-.T/2 •.T/2 
w. [w(t) - w(t)] =   \ (Mr)    W(T) w(t) -    YJ    KM   \ W(T) w(a) *, (a) da 

J J_T/2    3       [ k-0 T/2 

rT/2 [ N  6(t - T) / N   \ 

dr 

(t)   *k(T)   dT 

(aX. + ^) *.<t) - (aA. + ^) *.(t)   = 0      ; 

j = 0, 1, 2, . . .        ;        a = 0, 1       ;        all t       . (A-7) 

1 n /\ 
In the absence of the additive white channel noise, w(t) is equal,     with probability one, to w(t) 

at any  t,   assuming that <p   (t, T) is continuous in t  and   T.    (This continuity assumption could be 

violated,   for example,  by a process formed by sharply gating a stationary process,   although it 

will be satisfied by stationary processes themselves.    As a reasonable engineering approximation 

we henceforth assume that continuity holds.)   Thus under either hypothesis,   w(t) — w(t) is a 

waveform generated solely by the noise and as such can contain no direct information about 

whether or not there was a transmission over the channel;   neither can it convey information 

indirectly when taken in conjunction with the {w.} because of the statistical independence just 

shown. 

We conclude by this plausibility argument' that the optimum decision-making receiver need 

only deal with the set of observables {w.},   and furthermore that,   by virtue of their statistical 

independence,   the overall ratio of probability measures under the two hypotheses can be con- 

structed by multiplying together the ratios for the individual  w..    The zero-mean Gaussian 

observable w. having variance (aX. + N   /z) by (A-6),   with a = 0 or 1 according to the hypothesis 

selected,   we find for log A,   the logarithm of the likelihood ratio formed on the observation of 

one of the two received signals in the interval (—T/2,   T/2): 

OO OO 2 
, / 2X.> X.w. 

logA=-^     V    log/1+_l\ + __    V   _J_J_ (A.8) 

j = 0 °' °j=0     ° J 

t It would be presumptuous to call our argument even "formal," considering that the series for w(t) in (A-5) does 
not converge.'   However, it appears certain that (A-8) is the correct expression for the logarithm of the likelihood 
ratio in the wide variety of white-noise situations where both sums converge separately.! 9 
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From the discussion preceding (2.1) of the main text,  we are allowed to add to (A-8) so that 

its first right-hand term is canceled,   and are permitted as well to then multiply the result by 

N /2,  receiver optimality being unaffected.    Thus the modified but still-optimum radar processor 

reduces its input signal w(t),   received in the observation interval (—T/2,   T/2),  to the quadratic 

form d  : 

T/2 

^    w(t) W(T) 

T/2 
Here we have referred to (A-l).   To obtain an explicit expression for the infinite-series process- 

ing kernel F(t, T) that appears in the integrand of (A-9), one needs to solve the generally difficult 

inhomogeneous integral equation: 

X.w. y   LJ  
Li    1 + 2X./N 

j=0 •> 

X.lp.(t)   tp.(T) 
V       ]  ] J 

j=0 
1 + 2X./N dtdr (A-9) 

>T/2 [Z<pz{t,<r) pT/2 it 

'-T/2' N 
+ 6(t - a) F(cr, T) da = <p   (t, r) -?«. '*i (A-10) 

As N   — » it can be seen from (A-10) that F(t, T) tpJt.T). 

Turning now to the consequences of the narrow-band character assumed for fluctuating- 

multipath perturbed transmission,   we sec from (1.1) that <p   (t, 7) is locally sinusoidal in  t, 

assuming that u>    is high relative to the bandwidths of the transmission and the channel fluctua- 

tions.    Therefore by (A-2), the eigenfunctions {^.(t)} must likewise be locally sinusoidal with 

angular frequency  u>   .    Hence they are representable as i/'.(t) = N/2 Re {ty.(t) exp[ia)  t + iO]}, 

where   O   is an as yet unspecified real constant and 4>(t) is a complex function whose variation 

is slow relative to that of exp[ioj  t].   Substituting (1.1) and this representation for 4 .(t) into (A-2), 

and remembering that 2 Re {A}  Re {B} = Re {AB} + Re {AB*},   we have the condition 

|Re   exp[i«0t + ie]  C JJx(t \)Tf(T-  X)   •    (W,  X)   IP   (T) 

x exp [io;(t — T)] do; dX dr[  + -r Re  jexp[ia)  t — ie] c /2 
a x(t - V) 

x   9C*(T - X) 4>  (w, X) JT*(T) exp [ia;(t - T) - 2iaj  T]du;dX 

X. Re {^.(t) exp[iu>   t 4 iO]} T 
2 t « (A-ll) 

Under the assumed narrow-band conditions,  the integrand of the second integral in (A-ll) 

oscillates so rapidly that the integral becomes negligible relative to the first integral.     Thus a 

sufficient condition for \[Z Re {$.(t) exp[iu> t + iO]}  to be an eigenfunction of (A-2) is that 4 .(t) be- 

an eigenfunction of the integral equation: 

T / ? 
f \\ SC(t-X) X*(T-\) *  (w, \) exp[iw(t 
J_T/2  J J y 

da) dX f.(T) dr 

4X.i^.(t) -2<t<   i (A-12) 

29 



That (A-12) is also a necessary condition on 4I(T) can be established by considering (A-ll) at 

two values of t  spaced 7r/(2aj  ) apart,  and noting that the functions multiplying exp[iu>  t + iG] 

can change only negligibly in such a small time interval,   again by the narrow-band assumption. 

Thus far the value of 6  in the representation of the narrow-band {i/>(t)} has been left open; 

we now see that any value of 6  will yield an eigenfunction tp.(t) of (A-2) for a given solution !/>.(t) 

of (A-12).    There are,  however,  just two linearly independent solutions of (A-2) for a given 

!/».(t).    This can be seen by forming the two solutions through choosing a pair of values of © that 
1        / 2iu)  t 

are TT/2 apart [(A-3) then being satisfied if,   as usual,  we neglect terms in e       ° ] and then finding 

it impossible to introduce a third solution at a value of 9 that yields linear independence with 

respect to the other two.    We conclude that for each eigenvalue of (A-12) [counting each by the 

number of linearly independent solutions >p.(t) that are associated with it] there will be a pair of 

eigenvalues of (A-2),  both equal to one-quarter the eigenvalue of (A-12).    To avoid confusion 

in indexing,  we shall now denote the eigenvalues of (A-12) by {4\.} rather than {4X.};   those of 

(A-2) then become {A.} = {\n, An. *-i, ^,, ^->. ^->> • • •} • 1  jJ 0      0      1      1      2      Z ' 
Finally,   we note that the complex kernel <p   (t, T) that multiplies (Mr) in (A-12) is llermitian 

^ 1 
symmetric:   <p   (t, T) = </>*(T, t).    Since it is easily established that this kernel is also non-negative 

definite and (using the Schwarz inequality) square-integrable like <pr (t, r) in (A-4),   its eigenvalues 

form a bounded,   countable and non-negative set,   just as in (A-2). 

Under these conditions the eigenfunctions (i?.(t)} can be arranged to be orthonormal    [con- 

sistent with the orthonormality of those of (A-2)]: 

.T/2 

I i>At) ^(t) dt = 6 . (A-13) 
T/2    J K Jk 
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APPENDIX B 

PROOF THAT  FOR OPTIMUM RECEPTION THE  ERROR PERFORMANCE 

IS NEVER IMPROVED BY DECREASING THE NOISE-SCALED SYSTEM 

EIGENVALUES f3. 

In this Appendix we first establish that if,  for a spread-channel,   optimum-reception radar 

system,   there is a decrease in any one of the {/3.},   with the remainder of the {/?.} arbitrary but 

fixed,   the false-alarm probability for a given but arbitrary miss probability will never decrease 

(actually,  it will in general increase).    We then consider a dual-spread-channel,   optimum- 

reception binary communication system operating with a fixed but arbitrary probability of mis- 

taking the single transmission to have been sent over one channel for its actually having been 

sent over the other.    For this communication system it is shown that a decrease in any one of 

the /3. never produces any decrease in the probability for the opposite type of error.    Because 

of differences in system structure,   it is necessary to consider the radar and communication 

situations separately.    The proof used for each system also demonstrates that error performance 

is never worsened by increasing any of the /?.. 

I.      THE  RADAR SYSTEM 

With the decision level set at DN  /4 > 0,  the miss and false-alarm probabilities for optimum 

reception are given by (2.25) and (2.27),   respectively.    In order to hold the miss probability 
o 

"M 
('onstant when there is a change in a particular fi.,   say /3   ,   D  must be adjusted.     For an 

infinitesimal change d/3    in i!   .   the required change in  D  is dD,   and the ratio - dD/d/S    is found 

by taking the ratio of the partial derivative of (2.25) with respect to jl    to that with respect to U: 

dD   _   3PM^n 
d/3 

n        3P°/8D 

-1 
2   /c        n    (1 - 2i£jn) (1 - 2i/?nhJ.) 

-1    -aJD 
dji 

L     n   (i-2i/3j 
^1 lj = 0 J    J 

-1 -iuD 
dM 

(B-l) 

On the other hand,  the incremental change in the false-alarm probability P.-, that occurs when 

(i    is changed by d/3  ,   but  D  is at the same time changed by dD to keep the miss probability P.. 

fixed,   is given by 

9P° <»P° 
.Do         F    ,,, 1 dPF -   VT df3n + TiT 

8P|   [3P°A>gn       ^ 
3D       3P>D        dVl 

F 

d/? (B-2) 

Since i)P,,/oD is clearly non-positive,   the change in false-alarm probability will be non-negative 

for a non-positive <l/j    if \<. e can show that the bracketed expression in (H-2) is non-negative for 

all values of (i    and   D.     From (2.27) we find 

9PF/^n 

£)P°/3D 

2/ n    (1 — 2UB.M-)]       d -2i/3uf1 e^D dji 
^1 L j   0 ;M  

[oo 1   - 1 . 

n    (1-21/3^.) e_1^D dfi 
j = 0 J    J 

(B-3) 
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which is non-positive,   since the integrals in (B-3) represent certain probability density functions, 

Comparing (B-l) and (B-3),   no /3    being negative,   it is established that the bracketed expression 

in (B-2) is always non-negative,   and hence that the error performance can never be improved by 

decreasing any (or all) /3.. 

II.    THE  BINARY COMMUNICATION SYSTEM 

Equation (2.29) gives the probability of wrongly judging that the communication transmission 

has been sent over the first of the dual channels,   when in fact it has been sent over the second. 

Optimum detection is assumed,   with the decision level set at DN   /4.    The symmetry argument 

preceding (2.24) shows that with this decision level the probability of making the opposite type 

of error is also given by (2.29),  but with —D substituted for D. 

We study the behavior of P   (D) for P   (—D) held fixed as any selected /3    changes.' Parallel- 

ing the radar proof,   we find by taking partial derivatives of P   (D) and P   (—D) with respect to 

/3    and  D,   and consolidating,   that for the infinitesimal change d/3    in /3   , 

dP   (D) = -d/3 e n 

3Pe°(D) 

3D 

4/3   (2 + /3   ) *n 'n 
1 + /3 

r 
izi 

(1+/3./2)
2
 + (/3.H.)

2 (l+/3n/2)2 + (/3nH02 

r -     —I (i +/yz)2 + </y>2 
-1 

exp[--^-] du. 

(B-l) 

In arriving at (B-4) we make the change u.1 = — u. in the integrals when P   (—D) is held fixed e 
related to P   (—D) and then drop the prime.] 

Since 3P°(D)/9D,   /3  ,   and the integrals in (B-4) are all non-negative,   the latter because 

they are proportional to certain probability densities,  it is established that the error perform- 

ance is never improved by decreasing any of the p.. 

t When D = 0 in binary symmetric signaling, the two error probabilities are equal and are given by (2.29).    In this 
case separation of the integral in (2.29) into real and imaginary parts results in the latter vanishing;  differentiation 
with respect to any p    immediately establishes that the error probability is a nonincreasing function of the (3 
(see Sec. IV-B).    '     n n 
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APPENDIX C 
A CANDIDATE BOUND FOR RADAR ERROR PROBABILITY 

As discussed in Sec. IV-A,  we wish to show that for the sum of the two kinds of radar error 

probability in optimum reception, 

PF + PM>i~eriM (C-D 

at any decision level,  where the output SNR R is given by the sum of the squared,  noise-scaled 

eigenvalues {#.} as in (4.7).    By referring to (2.25) and (2.27),  we find that P° + P° attains its 
J r M 

minimum value P    .    when the decision level satisfies min 

D = 2 log II    (1 + fy 
j = 0 

(C-2) 

so that 

exp 1 — 21,0.    2   log(l + /3.)    dK 

P°+P°»P     .    =l-(4ff)-
1C        l. Jz° J       . (C-3) F        M        mm v     '      J_ 

C i (-ifxx-i^-i)   n   (i -2i/? p.) 
j=o J 

The derivative of Pm-n with respect to the value of a /3,  that is repeated K times in (C-3) 

3/3. Ml +/3,)  Jc = • <e   4» 
1      (1 -2tf.il)    n     {l — 2ij3 |x) 

k      j=0 J 

Thus,   if a K-fold eigenvalue /3.   is incremented by d/3.   while a different eigenvalue /3    (that is not 

considered multiple even if its value is duplicated) is simultaneously incremented by d/3    = 

— K(/3, //3.) d/3,   so that  R,   the sum of the squared eigenvalues,   remains fixed,   the net change in 

P is given by min       & J 

-VW-'V r    ti-zwi+^+fl,)]^^ n logd+^Jd^ 
dP  k    k   '        k  ' J-° .      (C-5) a^min      TT(1 +/J   ) (1 + /3   ) J - ' (L   D' 

1 (1-21/3^) (l-2i/3^)    n    (1-21/3 K) 
j=0 J 

As long as the (possibly multiple) eigenvalue j3,   exceeds /3.,   and provided that the contour in- 

tegral in (C-5) is always non-negative,   a decrease in the eigenvalue /?,   with a compensating,   R- 

preserving increase in /3. will result in no net increase for P    .   .    Hence if the eigenvalues are 

ranked in a nonincreasing order,   we may first uniformly trade as many of the largest as may 

exist against a single one of the next largest until equality is obtained within this set,   then uni- 

formly trade this new largest set against one of the new next-largest,   and so on,   while never 

increasing P    .    nor altering R. &    mm & 

By following this procedure ad infinitum,   we obtain (in a heuristic limit) an infinite number 

of vanishingly small but equal eigenvalues.    The Central Limit Theorem then guarantees the 

Gaussianness of the optimum receiver output (2.21);   it is also simple to show that by virtue of 
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the eigenvalue smallness,  the presence of an echo has negligible effect on the output variance. 
In the limit,  the minimum error probability is obtained with the decision level set halfway be- 
tween the mean output for the echo present and that for the echo absent.    From the definition of 

the output SNR R as the ratio of the squared difference in means to the common output variance, 

it then follows that the value of the minimum sum of error probabilities in the limiting situation 
is given by the right member of (C-l).    This establishes the bound. 

For our argument to be valid,  however,   it is necessary that the value of the contour integral 
in (C-5) be non-negative at every stage of the above procedure,   and this is where the weakness 

lies.    The sign of the contribution made by that part of the integrand attributable to "1" in 

[1 — 2in(l + /3,+ /3.)] is certainly never negative,  for (as in Appendix B) this contribution is the 
value of a certain probability density taken at a particular level.    Unfortunately,   it appears 

difficult to prove that the contribution of the remainder,   attributable to —2i^(l + /3,+ /?.),   is 

likewise always non-negative.    In a large number of special cases,   however,  this has been 
found to be so without exception,  provided that j3    is the largest (possibly multiple) eigenvalue, 

just as in the above argument. 
It may be noted that the remainder contribution under question in (C-5) is proportional to 

the derivative,   taken at the level 2    2    log(l + /3.), of the probability density of the sum of a set 
j=0 1 

of central chi-square variates.    Each of these variates has two degrees of freedom and has a 

p. for the common variance of its Gaussian components;   in the case of ji, ,  there is one more 

variate than its multiplicity,   and the same is true of /3..    Since this repetition,   as observed in 
X DO 

the denominator of the integrand in (C-5),  does not occur in   2    log(l + /?.),   it would suffice to 
j=0 J 

show that the maximum (unimodality can be assumed) in the aforementioned probability density 
(of "generalized chi-square" class) never occurs at a level less than twice the sum taken on 

the {log(i + /3.)},   after the largest of this set has been excluded (or one of the largest,   if there 

is a multiplicity). 
As a matter of fact,   in all cases that we have examined,   the peak has been observed to lie 

at or above the similarly censored-and-doubled sum of the component variances {/}.} themselves, 
which implies a stronger lower bound than the logarithmic one,   and even at or above the yet 
stronger candidate bound formed by subtracting from the uncensored variance sum (i.e.,   the 

output SNR R) the ratio of the uncensored sum of the {/3. } to the uncensored sum of the {p. }, 
and doubling the result.    (Exact equality is met in these latter two bounds when there are a finite 

number of p.,  all of equal value.)   There is an obvious circuit-theory parallel to these latter two 
bounds,   conjectured but thus far unproven,   which may be stated as follows: 

Theorem. 

The (single) peak in the impulse response of an RC or RL ladder network 
(i.e.,   all-real-pole) can occur no sooner than the sum of the modal time- 
constants less the ratio of the sum of their cubes to the sum of their squares, 
or (should this not prove to be true) minus any one time constant that is not 
exceeded by another. 

No counterexample to either part of this theorem has been found after examining several trial 

examples and making more than a dozen analog-computer tests (the latter with the kind assistance 

of Dr. Harold K. Knudsen).    Furthermore,  the error-probability bound (C-l) that it supports 
has been sustained in a number of radar cases that have been calculated exactly. 
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